Mostowski collapse lemma

Result in mathematics and set theory

In mathematical logic, the Mostowski collapse lemma, also known as the Shepherdson–Mostowski collapse, is a theorem of set theory introduced by Andrzej Mostowski (1949, theorem 3) and John Shepherdson (1953).

Statement

Suppose that R is a binary relation on a class X such that

  • R is set-like: R−1[x] = {y : y R x} is a set for every x,
  • R is well-founded: every nonempty subset S of X contains an R-minimal element (i.e. an element xS such that R−1[x] ∩ S is empty),
  • R is extensional: R−1[x] ≠ R−1[y] for every distinct elements x and y of X

The Mostowski collapse lemma states that for every such R there exists a unique transitive class (possibly proper) whose structure under the membership relation is isomorphic to (X, R), and the isomorphism is unique. The isomorphism maps each element x of X to the set of images of elements y of X such that y R x (Jech 2003:69).

Generalizations

Every well-founded set-like relation can be embedded into a well-founded set-like extensional relation. This implies the following variant of the Mostowski collapse lemma: every well-founded set-like relation is isomorphic to set-membership on a (non-unique, and not necessarily transitive) class.

A mapping F such that F(x) = {F(y) : y R x} for all x in X can be defined for any well-founded set-like relation R on X by well-founded recursion. It provides a homomorphism of R onto a (non-unique, in general) transitive class. The homomorphism F is an isomorphism if and only if R is extensional.

The well-foundedness assumption of the Mostowski lemma can be alleviated or dropped in non-well-founded set theories. In Boffa's set theory, every set-like extensional relation is isomorphic to set-membership on a (non-unique) transitive class. In set theory with Aczel's anti-foundation axiom, every set-like relation is bisimilar to set-membership on a unique transitive class, hence every bisimulation-minimal set-like relation is isomorphic to a unique transitive class.

Application

Every set model of ZF is set-like and extensional. If the model is well-founded, then by the Mostowski collapse lemma it is isomorphic to a transitive model of ZF and such a transitive model is unique.

Saying that the membership relation of some model of ZF is well-founded is stronger than saying that the axiom of regularity is true in the model. There exists a model M (assuming the consistency of ZF) whose domain has a subset A with no R-minimal element, but this set A is not a "set in the model" (A is not in the domain of the model, even though all of its members are). More precisely, for no such set A there exists x in M such that A = R−1[x]. So M satisfies the axiom of regularity (it is "internally" well-founded) but it is not well-founded and the collapse lemma does not apply to it.

References

  • Jech, Thomas (2003), Set Theory, Springer Monographs in Mathematics (third millennium ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-44085-7
  • Mostowski, Andrzej (1949), "An undecidable arithmetical statement" (PDF), Fundamenta Mathematicae, 36 (1), Institute of Mathematics Polish Academy of Sciences: 143–164, doi:10.4064/fm-36-1-143-164
  • Shepherdson, John (1953), "Inner models for set theory, Part III", Journal of Symbolic Logic, 18 (2), Association for Symbolic Logic: 145–167, doi:10.2307/2268947, JSTOR 2268947, S2CID 35526998
  • v
  • t
  • e
GeneralTheorems (list)
 and paradoxesLogics
Traditional
Propositional
Predicate
Set theory
Types of sets
Maps and cardinality
Set theories
Formal systems (list),
language and syntax
Example axiomatic
systems (list)
Proof theoryModel theoryComputability theoryRelated
icon Mathematics portal
  • v
  • t
  • e
Overview
  • Set (mathematics)
Venn diagram of set intersection
Axioms
Operations
  • Concepts
  • Methods
Set types
Theories
Set theorists