Kalman decomposition

Mathematical Theory

In control theory, a Kalman decomposition provides a mathematical means to convert a representation of any linear time-invariant (LTI) control system to a form in which the system can be decomposed into a standard form which makes clear the observable and controllable components of the system. This decomposition results in the system being presented with a more illuminating structure, making it easier to draw conclusions on the system's reachable and observable subspaces.

Definition

Consider the continuous-time LTI control system

x ˙ ( t ) = A x ( t ) + B u ( t ) {\displaystyle {\dot {x}}(t)=Ax(t)+Bu(t)} ,
y ( t ) = C x ( t ) + D u ( t ) {\displaystyle \,y(t)=Cx(t)+Du(t)} ,

or the discrete-time LTI control system

x ( k + 1 ) = A x ( k ) + B u ( k ) {\displaystyle \,x(k+1)=Ax(k)+Bu(k)} ,
y ( k ) = C x ( k ) + D u ( k ) {\displaystyle \,y(k)=Cx(k)+Du(k)} .

The Kalman decomposition is defined as the realization of this system obtained by transforming the original matrices as follows:

A ^ = T A T 1 {\displaystyle \,{\hat {A}}=TA{T}^{-1}} ,
B ^ = T B {\displaystyle \,{\hat {B}}=TB} ,
C ^ = C T 1 {\displaystyle \,{\hat {C}}=C{T}^{-1}} ,
D ^ = D {\displaystyle \,{\hat {D}}=D} ,

where T 1 {\displaystyle \,T^{-1}} is the coordinate transformation matrix defined as

T 1 = [ T r o ¯ T r o T r o ¯ T r ¯ o ] {\displaystyle \,T^{-1}={\begin{bmatrix}T_{r{\overline {o}}}&T_{ro}&T_{\overline {ro}}&T_{{\overline {r}}o}\end{bmatrix}}} ,

and whose submatrices are

  • T r o ¯ {\displaystyle \,T_{r{\overline {o}}}}  : a matrix whose columns span the subspace of states which are both reachable and unobservable.
  • T r o {\displaystyle \,T_{ro}}  : chosen so that the columns of [ T r o ¯ T r o ] {\displaystyle \,{\begin{bmatrix}T_{r{\overline {o}}}&T_{ro}\end{bmatrix}}} are a basis for the reachable subspace.
  • T r o ¯ {\displaystyle \,T_{\overline {ro}}}  : chosen so that the columns of [ T r o ¯ T r o ¯ ] {\displaystyle \,{\begin{bmatrix}T_{r{\overline {o}}}&T_{\overline {ro}}\end{bmatrix}}} are a basis for the unobservable subspace.
  • T r ¯ o {\displaystyle \,T_{{\overline {r}}o}}  : chosen so that [ T r o ¯ T r o T r o ¯ T r ¯ o ] {\displaystyle \,{\begin{bmatrix}T_{r{\overline {o}}}&T_{ro}&T_{\overline {ro}}&T_{{\overline {r}}o}\end{bmatrix}}} is invertible.

It can be observed that some of these matrices may have dimension zero. For example, if the system is both observable and controllable, then T 1 = T r o {\displaystyle \,T^{-1}=T_{ro}} , making the other matrices zero dimension.

Consequences

By using results from controllability and observability, it can be shown that the transformed system ( A ^ , B ^ , C ^ , D ^ ) {\displaystyle \,({\hat {A}},{\hat {B}},{\hat {C}},{\hat {D}})} has matrices in the following form:

A ^ = [ A r o ¯ A 12 A 13 A 14 0 A r o 0 A 24 0 0 A r o ¯ A 34 0 0 0 A r ¯ o ] {\displaystyle \,{\hat {A}}={\begin{bmatrix}A_{r{\overline {o}}}&A_{12}&A_{13}&A_{14}\\0&A_{ro}&0&A_{24}\\0&0&A_{\overline {ro}}&A_{34}\\0&0&0&A_{{\overline {r}}o}\end{bmatrix}}}
B ^ = [ B r o ¯ B r o 0 0 ] {\displaystyle \,{\hat {B}}={\begin{bmatrix}B_{r{\overline {o}}}\\B_{ro}\\0\\0\end{bmatrix}}}
C ^ = [ 0 C r o 0 C r ¯ o ] {\displaystyle \,{\hat {C}}={\begin{bmatrix}0&C_{ro}&0&C_{{\overline {r}}o}\end{bmatrix}}}
D ^ = D {\displaystyle \,{\hat {D}}=D}

This leads to the conclusion that

  • The subsystem ( A r o , B r o , C r o , D ) {\displaystyle \,(A_{ro},B_{ro},C_{ro},D)} is both reachable and observable.
  • The subsystem ( [ A r o ¯ A 12 0 A r o ] , [ B r o ¯ B r o ] , [ 0 C r o ] , D ) {\displaystyle \,\left({\begin{bmatrix}A_{r{\overline {o}}}&A_{12}\\0&A_{ro}\end{bmatrix}},{\begin{bmatrix}B_{r{\overline {o}}}\\B_{ro}\end{bmatrix}},{\begin{bmatrix}0&C_{ro}\end{bmatrix}},D\right)} is reachable.
  • The subsystem ( [ A r o A 24 0 A r ¯ o ] , [ B r o 0 ] , [ C r o C r ¯ o ] , D ) {\displaystyle \,\left({\begin{bmatrix}A_{ro}&A_{24}\\0&A_{{\overline {r}}o}\end{bmatrix}},{\begin{bmatrix}B_{ro}\\0\end{bmatrix}},{\begin{bmatrix}C_{ro}&C_{{\overline {r}}o}\end{bmatrix}},D\right)} is observable.

Variants

A Kalman decomposition also exists for linear dynamical quantum systems. Unlike classical dynamical systems, the coordinate transformation used in this variant requires to be in a specific class of transformations due to the physical laws of quantum mechanics.[1]

See also

  • Realization (systems)
  • Observability
  • Controllability

References

  1. ^ Zhang, Guofeng; Grivopoulos, Symeon; Petersen, Ian R.; Gough, John E. (February 2018). "The Kalman Decomposition for Linear Quantum Systems". IEEE Transactions on Automatic Control. 63 (2): 331–346. doi:10.1109/TAC.2017.2713343. hdl:10397/77565. ISSN 1558-2523. S2CID 10544143.

External links

  • Lectures on Dynamic Systems and Control, Lecture 25 - Mohammed Dahleh [ar], Munther Dahleh, George Verghese — MIT OpenCourseWare