Dynamic structure factor

Function in condensed matter physics

In condensed matter physics, the dynamic structure factor (or dynamical structure factor) is a mathematical function that contains information about inter-particle correlations and their time evolution. It is a generalization of the structure factor that considers correlations in both space and time. Experimentally, it can be accessed most directly by inelastic neutron scattering or X-ray Raman scattering.

The dynamic structure factor is most often denoted S ( k , ω ) {\displaystyle S({\vec {k}},\omega )} , where k {\displaystyle {\vec {k}}} (sometimes q {\displaystyle {\vec {q}}} ) is a wave vector (or wave number for isotropic materials), and ω {\displaystyle \omega } a frequency (sometimes stated as energy, ω {\displaystyle \hbar \omega } ). It is defined as:[1]

S ( k , ω ) 1 2 π F ( k , t ) exp ( i ω t ) d t {\displaystyle S({\vec {k}},\omega )\equiv {\frac {1}{2\pi }}\int _{-\infty }^{\infty }F({\vec {k}},t)\exp(i\omega t)\,dt}

Here F ( k , t ) {\displaystyle F({\vec {k}},t)} , is called the intermediate scattering function and can be measured by neutron spin echo spectroscopy. The intermediate scattering function is the spatial Fourier transform of the van Hove function G ( r , t ) {\displaystyle G({\vec {r}},t)} :[2][3]

F ( k , t ) G ( r , t ) exp ( i k r ) d r {\displaystyle F({\vec {k}},t)\equiv \int G({\vec {r}},t)\exp(-i{\vec {k}}\cdot {\vec {r}})\,d{\vec {r}}}

Thus we see that the dynamical structure factor is the spatial and temporal Fourier transform of van Hove's time-dependent pair correlation function. It can be shown (see below), that the intermediate scattering function is the correlation function of the Fourier components of the density ρ {\displaystyle \rho } :

F ( k , t ) = 1 N ρ k ( t ) ρ k ( 0 ) {\displaystyle F({\vec {k}},t)={\frac {1}{N}}\langle \rho _{\vec {k}}(t)\rho _{-{\vec {k}}}(0)\rangle }

The dynamic structure is exactly what is probed in coherent inelastic neutron scattering. The differential cross section is :

d 2 σ d Ω d ω = a 2 ( E f E i ) 1 / 2 S ( k , ω ) {\displaystyle {\frac {d^{2}\sigma }{d\Omega d\omega }}=a^{2}\left({\frac {E_{f}}{E_{i}}}\right)^{1/2}S({\vec {k}},\omega )}

where a {\displaystyle a} is the scattering length.

The van Hove function

The van Hove function for a spatially uniform system containing N {\displaystyle N} point particles is defined as:[1]

G ( r , t ) = 1 N i = 1 N j = 1 N δ [ r + r r j ( t ) ] δ [ r r i ( 0 ) ] d r {\displaystyle G({\vec {r}},t)=\left\langle {\frac {1}{N}}\int \sum _{i=1}^{N}\sum _{j=1}^{N}\delta [{\vec {r}}'+{\vec {r}}-{\vec {r}}_{j}(t)]\delta [{\vec {r}}'-{\vec {r}}_{i}(0)]d{\vec {r}}'\right\rangle }

It can be rewritten as:

G ( r , t ) = 1 N ρ ( r + r , t ) ρ ( r , 0 ) d r {\displaystyle G({\vec {r}},t)=\left\langle {\frac {1}{N}}\int \rho ({\vec {r}}'+{\vec {r}},t)\rho ({\vec {r}}',0)d{\vec {r}}'\right\rangle }


References

  1. ^ a b Hansen, J. P.; McDonald, I. R. (1986). Theory of Simple Liquids. Academic Press.
  2. ^ van Hove, L. (1954). "Correlations in Space and Time and Born Approximation Scattering in Systems of Interacting Particles". Physical Review. 95 (1): 249. Bibcode:1954PhRv...95..249V. doi:10.1103/PhysRev.95.249.
  3. ^ Vineyard, George H. (1958). "Scattering of Slow Neutrons by a Liquid". Physical Review. 110 (5): 999–1010. Bibcode:1958PhRv..110..999V. doi:10.1103/PhysRev.110.999. ISSN 0031-899X.

Further reading

  • Ashcroft, Neil W.; Mermin, N. David (1976). Solid State Physics (Appendix N). Holt, Rinehart and Winston. ISBN 978-0-03-083993-1.
  • Lovesey, Stephen W. (1986). Theory of Neutron Scattering from Condensed Matter - Volume I: Nuclear Scattering. Oxford University Press. ISBN 9780198520283.


  • v
  • t
  • e
Stub icon

This scattering–related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e